Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 845-856, 2015.
Article in Chinese | WPRIM | ID: wpr-240582

ABSTRACT

Nitrate not only remarkably stimulates the rifamycinbiosynthesis in Amycolatopsis mediterranei, but also influences the primary metabolisms, including the inhibition of fatty acids biosynthesis in the bacterial. This phenomenon has been designated as "Nitrate Stimulating Effect" by the late Prof. J.S. Chiaosince its discovery in the 1970's, and has been found in many other antibiotics-producing actinomycetes subsequently. Based on the research in his laboratory, we have revealed that the nitrate stimulation effect mainly manifests in two aspects over the last two decades. First, nitrate promotes the supply of rifamycin precursors, e.g., UDP-glucose, AHBA, malonyl-CoA and methylmalonyl-CoA. Specifically, the biosynthesis of fatty acids is inhibited by nitrate consequently the acetyl-CoA is shunted into malonyl-CoA. Second, nitrate facilitates the expression of genes in the rifclulsterthat encodes rifamycin biosynthetic enzymes. Following our current understanding, the future research will focus on the signals, the signal transduction pathway and the molecular mechanisms that dictate nitrate-mediated transcriptional and post-translational regulations.


Subject(s)
Actinomycetales , Classification , Metabolism , Acyl Coenzyme A , Chemistry , Anti-Bacterial Agents , Nitrates , Chemistry , Rifamycins
SELECTION OF CITATIONS
SEARCH DETAIL